

Peer Review Visualization and Controls

October 17, 2006

OE Mission

 Lead National efforts to modernize the electric grid, enhance security, and reliability of the energy infrastructure and facilitate recovery from disruptions to the energy supply.

Research & Development (R&D)

Permitting, Siting, & Analysis (PSA) Infrastructure Security & Emergency Response (ISER)

Technology Development Priorities

- Visualization and Controls
 - Real-time monitoring
 - Secure control systems
- Distributed Systems
 - Phase out activities on single technology development
 - Systems integration and Interoperability
- High Temperature Superconductivity
 - Wires
 - Cables
 - Devices

R&D – An Essential Element in OE's Strategy

Accomplishes Grid Modernization, Security and Reliability

- Advanced tools
- Advanced technologies
- Recovery/Prevention supply disruptions

Builds partnerships with the key stakeholders who plan and operate critical national infrastructure

- Energy supply/delivery industries
- State agencies
- Equipment and knowledge suppliers

Spurs innovation, entrepreneurship, business development, and jobs creation

- Global economic competitiveness
- U.S. technology leadership
- Training the "next generation" of scientists, engineers, and entrepreneurs
- Goes beyond traditional practice/paradigm shift

High Temperature Superconductivity (HTS)

- Develop HTS wire with 100 times the power capacity of conventional copper wires at a comparable cost (\$/kiloamp-meter).
- Develop HTS electric power equipment with one-half the energy losses and one-half the size of conventional units.

- ✓ Congestion relief transmit more power through a smaller footprint
- ✓ Efficiency T&D system, large motors
- ✓ New capabilities Fault current limiters, low impedance power lines control regional electricity flow
- ✓ Military smaller motors enable improved naval ship design, smaller generators enable airborne non-lethal air force electromagnetic weapons

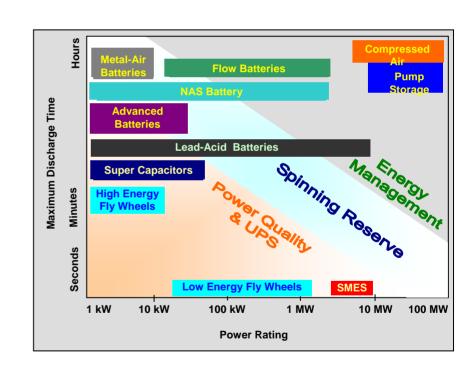
High Temperature Superconductivity (HTS)

A technology capable of revolutionizing electric power systems

- Congestion relief Transmit more power through a smaller footprint, higher power densities
- ✓ <u>Efficiency</u> Energy saving through near zero line losses T&D system, large motors
- ✓ <u>New capabilities</u> Fault current limiters, low impedance power lines control regional electricity flow

Highlight: Three Cable Projects

- Albany, NY: Distribution Cable (National Grid host utility) Operating since 8/2006
- Columbus, Ohio: Distribution Cable (American Electric Power – host utility) Operating since 8/2006
- Long Island, NY: Transmission Cable (Long Island Power Authority – host utility) Will begin operation in 2007

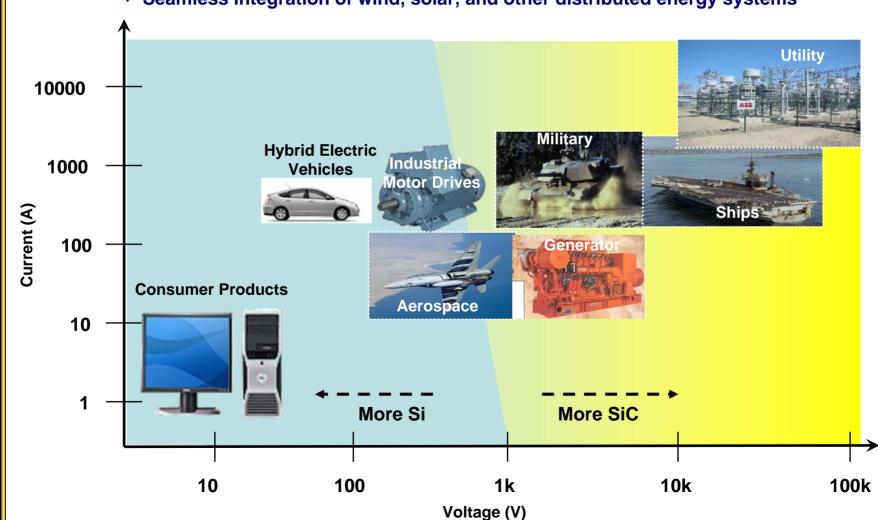

Total Budget: \$82M (50/50 cost-shared)

Energy Storage – A Key System Component

Lower-cost storage could revolutionize grid planning and operations

- ✓ Increases grid reliability
- ✓ Reduces system transmission congestion
- ✓ Helps manage peak loads
- Makes renewable electricity sources more dispatchable

Energy Storage


Long-term Goal

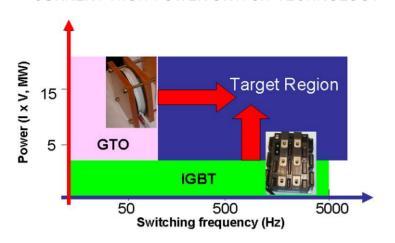
By 2030 there will be prototype super-capacitors and/or battery systems with operating voltages that are two-to-three times greater than today's systems or have a five-fold increase in stored energy.

	2006	2007	2008	2009	2010	2011	2012
Systems	3 systems installed with CEC	2 systems installed with CEC and NYSERDA					
Energy Density (Capacitors and Batteries)			3 ionic liquids for boosting power by 50%	10% increase in energy density	10% increase in energy density	50% increase in energy density	Factor of 2 increase

Why Power Electronics

- ✓ More precise and rapid switching of long-distance power transmission
- ✓ Faster response and better voltage support for local distribution
- ✓ Seamless integration of wind, solar, and other distributed energy systems

Power Electronics and Advanced Materials

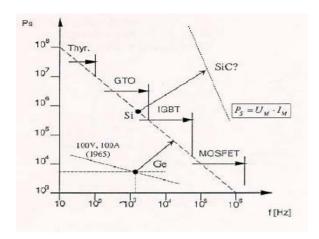

Long-term Goal: By 2025, demonstrate a prototype solid state breaker (switch) with less than 1 millisecond response. When used in a breaker, these switches will not increase the cost of the system by more than 10%.

Performance Characteristics			2010	2012	2018	2025	
Speed	Current mechanical breakers operate at 4-6 cycles (66 – 100 milli-seconds) Fuses operate in ½ cycle (4 milli- seconds)		5 milli- seconds	4 milli- seconds	2 milli- seconds	1 milli- seconds	
Voltage/Current	Silicon – based switches (fully controllable) 5000 volts and 10 amps	1200 volts/10 amps		10,000 volts/10 amps	20,000 volts/100 amps or 50,000 volts/>10 amps	20,000 volts/500 amps or 50,000 volts/>100 amps	
Temperature Limits	Current silicon – based devices are limited to 150°C			250°C		400°C	

Development of Emitter Turn-off (ETO) Switch

The ETO Switch

- Developed at Virginia Tech NC State
- 15-20 times faster than GTO
- 3 times the power and potentially less expensive than IGBT


R&D 100 Award Winner

Plans

- Development of Gen-4 Device with integrated optical controls
- Development of TransmissionStabilization Device with TVA
- Field Test of ETO based Statcom for Wind smoothing with BPA

Silicon Carbide, Wide Band Gap Devices

Higher Voltage, Current

- more power
- lower losses
- smaller device

Higher Temperature and Thermal Conductivity

less cooling

Higher Frequency

• faster device (2x10⁵ Hz)

SBIR Projects

- High power density (100 kW) silicon carbide (SiC) three phase inverters, Arkansas Power Electronics (FY06, Phase II)
- Advanced power converter system using high temperature, high power density SiC devices, Aegis technology (FY06, Phase II)
- Wide band gap, high voltage, high frequency switches (FY07)

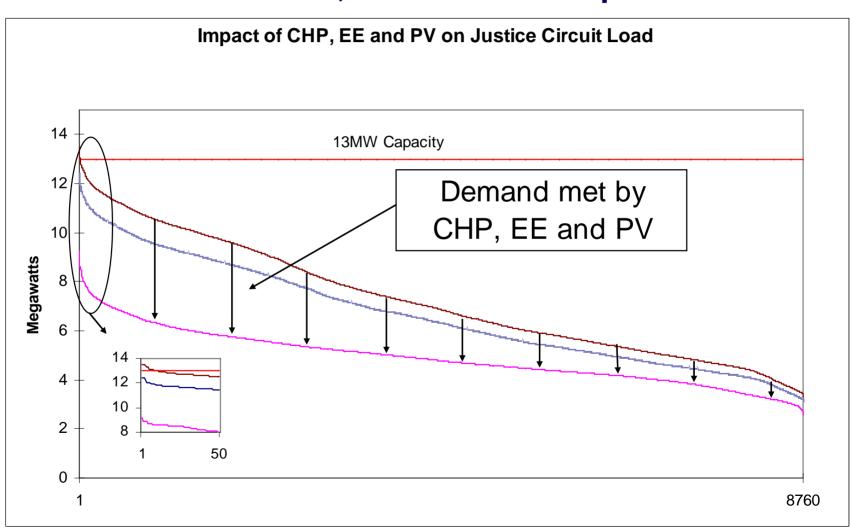
Other Technologies

- Gallium-Nitride
- Diamond (3x10⁶ Hz)
- Carbon Nano-Tubes (3x109 Hz)

Distributed Systems Integration

- Involves development of advanced operational controls for greater interoperability and the seamless integration of distributed systems (generation and storage) with electric grid planning and operations
- Includes research, development, field testing, and demonstration of distributed systems for demand response and ancillary services
- Provides energy solutions for utilities, customers, and local energy systems such as district energy, power parks, and microgrids

- ✓ Increases grid reliability
- ✓ Addresses vulnerability of critical infrastructure
- Helps manage peak loads and defers T&D investment
- ✓ Lowers emissions and utilizes fuel resources more efficiently
- ✓ Helps customers manage energy costs



Why Distributed Systems Integration

Benefits from integrating EE, distributed resources, and demand response

Source: Gas Technology Institute

Modern Grid Initiative Developmental Field Test (DFT)

Performers/partners

- Technology Partners:
 Softswitch
 (PQ monitoring);
 other vendor
 products
 being determined
- Utility Partners: Allegheny Energy and AEP

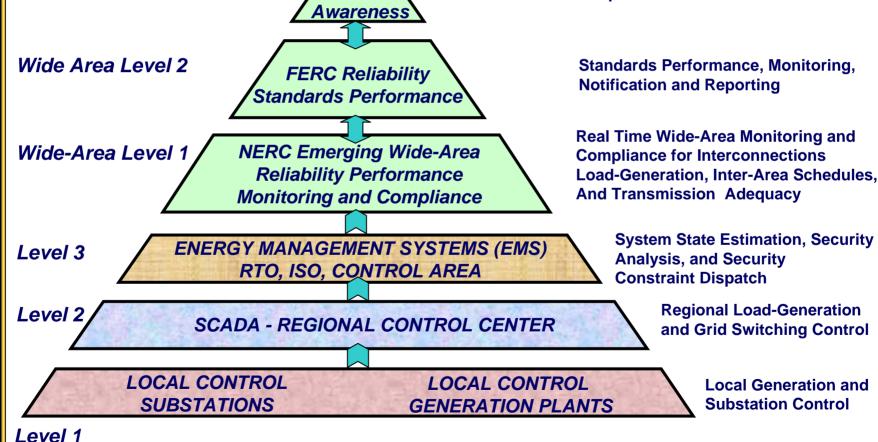
Decision Support & Advanced Control Methodologies Integrated Communication Sensing, Metering, and Measurement Advanced Grid Components

Issues/concerns

- Several DFT phases are needed to complete integration testing
- An integrated team work is critical to success

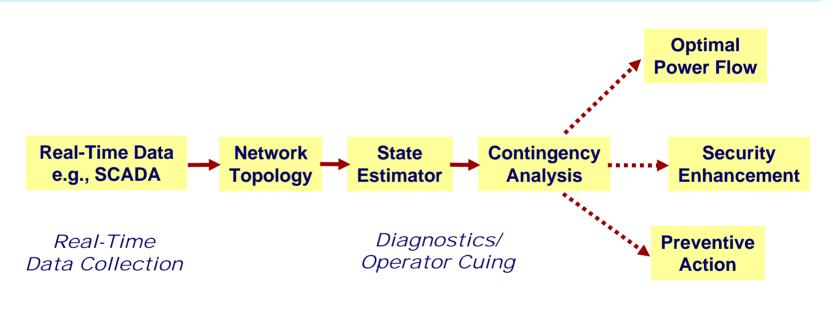
Objective

Test the integration of multiple technologies working together in a complex mesh of operations, analysis, alerting, and autonomous decisionmaking


Distributed Systems Integration

Long Term Goal

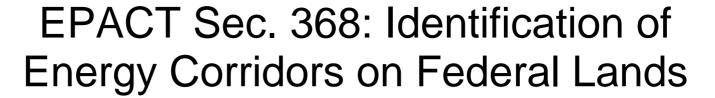
To demonstrate a 20% peak-load reduction by 2015, while providing value services and reliability levels required by customers.


	2008 – Baseline	2009	2010	2011	2012	2013	2014	2015
Percent reduction in peak load	0%	5%	10%	10%	15%	15%	15%	20%
Number of feeders analyzed/dem onstrated	0	1	2	2	1	2	2	1

V&C - Challenges and Needs for Evolving Industry Structure **CURRENT AND PROPOSED MONITORING AND CONTROL: LEVELS: Situation Awareness for Emergency** Wide-Area Level 3 Situation Response **Awareness** FERC Reliability Standards Performance **NERC Emerging Wide-Area** Reliability Performance Monitoring and Compliance

V&C Overview

<u>Goal:</u> By 2014, develop tools and algorithms to enable an automatic, smart, real-time switchable network for transmission system operations that enables secure and reliable grid operations, controls major regions of the grid, and is hardened against cyber attacks.



Automation

Congestion Study and National Corridor Next Steps - 1221

- DOE has opened a 60 day comment period ending October 10, 2006 requesting comment on:
 - The congestion study and subsequent analyses
 - If and where National Corridors should be designated and how they should be bounded
- DOE will consider designating National Corridors in all three congestion areas
- DOE plans to issue annual Congestion Area Progress Reports detailing progress made in the congestion areas
- Next congestion study is due August 8, 2009

DOE, Agriculture, Interior, Commerce and DOD shall:

- Designate corridors for oil, gas and hydrogen pipelines and electricity transmission facilities on federal land in the eleven contiguous Western states by August 2007; same by Aug 2009 for federal land in East, AK, and HI.
- The draft EIS required for designation of the western corridors will be published about 12/31/2006.
- Energy corridors in the West will be integrated into agency land use and resource management plans in August 2007.
- Extensive discussions with states, tribes, agencies, and industry continue as part of EIS preparation.
 Preliminary corridor map issued June 2006. Eastern study not yet begun.

Additional Information

Sec. 1221a:

- David Meyer, David.Meyer@hq.doe.gov, or
- Poonum Agrawal, poonum.agrawal@hq.doe.gov

Sec. 368:

- Julia Souder, Julia.Souder@hq.doe.gov
- Sec. 1221(FPA 216(h)):
- Tony Como, Anthony.Como@hq.doe.gov

Sec 1839:

Phil Overholt, phil.overholt@hq.doe.gov

Sec 1101:

Gil Bindewald, gilbert.bindewald@hq.doe.gov

Sec 1817:

Pat Hoffman, patricia.hoffman@hq.doe.gov

Websites:

- www.oe.energy.gov (OE)
- www.energy.gov (DOE)